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A linearized potential-flow analysis is presented for predicting the unsteady airloads 
produced by the vibrations of turbomachinery blades operating a t  transonic Mach 
numbers. The unsteady aerodynamic model includes the effects of blade geometry, 
non-zero mean-pressure variation across the blade row, high-frequency blade motion, 
and shock motion within the framework of a linearized frequency-domain formulation. 
The unsteady equations are solved using an implicit least-squares finite-difference 
approximation which is applicable on arbitrary grids. A numerical solution for the 
entire unsteady flow field is determined by matching a solution determined on a 
rectilinear-type cascade mesh, which covers an extended blade-passage region, to a 
solution determined on a detailed polar-type local mesh, which covers and extends 
well beyond the supersonic region(s) adjacent to  a blade surface. Results are 
presented for cascades of double-circular-arc and flat-plate blades to demonstrate the 
unsteady analysis and to partially illustrate the effects of blade geometry, inlet Mach 
number, blade-vibration frequency and shock motion on unsteady response. 

1. Introduction 
At transonic Mach numbers relatively small-amplitude unsteady motions can 

produce large variations in the magnitude and phase of the aerodynamic forces and 
moments. These characteristics enhance the likelihood of an aeroelastic instability 
and thus are a major concern in transonic design. Of particular concern are flutter 
boundaries. The aeroelastician is normally confronted with determining the stability 
of a configuration with respect to infinitesimal disturbances. For this purpose a 
linearized unsteady aerodynamic theory is desirable. Although substantial progress 
has been achieved towards the development of both linear and nonlinear unsteady 
transonic theories for fixed wings (as reviewed by Tijdeman & Seebass 1980), these 
are either too restrictive or too expensive to permit their routine use in detailed 
turbomachinery aeroelastic investigations. Thus the objective of the present effort 
is to  provide a linearized unsteady transonic analysis for two-dimensional cascades 
which accounts for the effects of blade geometry and loading and applies a t  high 
vibration frequency. Although the attention here is focused on turbomachinery 
applications, the basic aerodynamic model described in this paper could also lead to  
useful methods for predicting the unsteady loads associated with the motions of a 
variety of aerodynamic configurations including those of thick, blunt-nosed, transonic 
airfoils. 

The unsteady aerodynamic models currently used for turbomachinery aeroelastic 
design predictions (for an informative review see Whitehead 1980) are essentially 
based on classical linearized theory. Here both steady and unsteady disturbances 
caused by airfoil shape and incidence and by airfoil motion respectively are regarded 
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as being of the same order of magnitude and small relative to the free-stream speed, 
leading to linear constant-coefficient boundary-value problems for the steady and 
unsteady disturbance potentials. The classical formulation admits very efficient 
semianalytic solutions for entirely subsonic or entirely supersonic flows, and i t  has 
recently been extended by Goldstein, Braun & Adamczyk (1977) to provide solutions 
for flows in supersonic cascades with strong in-passage shocks. However, this 
formulation does not account for interactions between the steady and unsteady 
disturbances, and such interactions are believed to  be crucial to the successful 
prediction of unsteady transonic airloads as well as to  the understanding of a variety 
of turbomachinery aeroelastic phenomena. The influence of steady disturbances on 
unsteady response is retained in the so called ' time-linearized ' transonic small- 
disturbance approximation. Here unsteady disturbances are regarded as small 
relative to steady disturbances caused by airfoil shape and incidence, which are in 
turn assumed to be small relative to  the free-stream speed. These assumptions along 
with appropriate independent-variable scalings provide a linearized theory which 
formally applies at free-stream Mach numbers close to  one, but only for low-frequency 
unsteady motions. Finite-difference methods have been developed for solving the 
time-linearized transonic equations in either the time (Fung, Yu & Seebass 1978) 
or frequency (Ehlers & Weatherill 1982) domain. But these methods have been 
applied only to the prediction of unsteady transonic flows around isolated airfoils. 

The flat mean-surface approximation, used in the treatment of airfoil and wake 
boundary conditions, is an important simplification associated with the foregoing 
linearized unsteady models. However, the assumptions that permit this simplification 
place severe restrictions on airfoil geometry and loading and, in the transonic case, 
on the frequency of the unsteady motion. As such, these theories fail to meet the needs 
of turbomachinery designers over a wide range of practical operating conditions. To 
partially overcome the foregoing limitations, linearized unsteady aerodynamic 
models have recently been formulated for subsonic cascades which include the effects 
of blade geometry and loading on unsteady response (Atassi & Akai 1978; Verdon 
& Caspar 1980; Whitehead & Grant 1981 ; Caruthers 1981). Here the unsteady flow 
is regarded as a small-amplitude harmonic fluctuation about a fully non-uniform 
steady flow. The steady flow is determined as a solution of the full potential equation, 
and the unsteady flow is governed by a linear equation with variable coefficients which 
depend on the underlying steady flow. Several accurate and reliable numerical 
solution algorithms for the nonlinear steady problem are currently available (see 
McNally & Sockol 1981). I n  addition, a finite-difference approximation based on an 
implicit least-squares development and applicable on arbitrary grids has been 
developed by the present authors for resolving the linearized subsonic unsteady 
problem (Caspar & Verdon 1981). Numerical results have been reported for vibrating 
cascades of sharp-edged, double-circular-are and thin-circular-arc airfoils and for 
cascades of blunt-nosed NACA 0012 (Verdon & Caspar 1982) and NACA 65 series 
airfoils. Predictions for the NACA 65 series airfoils were found to be in excellent 
agreement with cascade wind-tunnel measurements made by Carta (1983). 

In  the present effort the aerodynamic and numerical models developed previously 
by the present authors (1980, 1981, 1982) have been extended for transonic 
applications. This has been accomplished by introducing shock-jump conditions into 
the linearized unsteady formulation and by including the concentrated loads 
produced by shock motion in the determination of unsteady force and moment. In  
addition, transonic differencing strategies and shock-fitting procedures have been 
incorporated into the unsteady numerical approximation. This approximation has 
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been implemented on both cascade and local meshes. The latter is required to resolve 
the flow accurately in supersonic regions and to fit shocks into the unsteady solution. 
In this paper the unsteady transonic aerodynamic model and numerical approximation 
are described, and numerical results are presented and evaluated for cascades of 
vibrating sharp-edged double-circular-arc (DCA) airfoils. This simple example con- 
figuration has been selected to permit concentration on the transonic aspects of 
the unsteady problem (i.e. local supersonic regions and moving shocks) without 
introducing the additional complications associated with rounded blade edges and 
mean incidence. 

The concept of linearizing unsteady fluctuations with respect to a fully non-uniform 
mean flow has been employed in other unsteady aerodynamic applications; e.g. in 
studies on turbulent flows past obstacles (see Hunt 1973 ; Goldstein 1979). However, 
with the exception of the subsonic cascade analyses referred to above and the present 
transonic cascade analysis, this concept has not been widely exploited for developing 
unsteady analyses intended for aeroelastic applications. The improvements in 
physical modelling offered by such a linearization coupled with advances in our 
ability to resolve the resulting governing equations numerically should make this 
approach an increasingly attractive one for future consideration. 

2. Problem description and governing equations 
In  the following discussion all physical quantities are dimensionless. Lengths have 

been scaled with respect to blade chord, time with respect to the ratio of blade chord 
to upstream free-stream speed, and density and pressure with respect to the upstream 
free-stream density and dynamic pressure respectively. We consider adiabatic flow, 
with negligible body forces, of an inviscid non-heat-conducting perfect gas through 
a two-dimensional oscillating cascade (see figure 1 ) .  The mean or steady-state 
positions of the blade chord lines coincide with the line segments 9 = 6 tan O+m(G(, 
0 < 5 < cos0, m = 0, f. 1, f 2 ,  ..., where 6 and 9 are the cascade axial and 
circumferential coordinates, m is a blade-number index, 0 is the cascade stagger 
angle, and G is the cascade gap vector, which is directed along the 7-axis with 
magnitude equal to the blade spacing. It is assumed that in the absence of blade 
motions uniform subsonic conditions exist far upstream and downstream of the blade 
row. The blades are undergoing identical harmonic motions at frequency w and with 
constant phase angle u between the motion of adjacent blades. Blade shape and 
orientation relative to the inlet free stream and the amplitude, frequency and mode 
of the blade motion are assumed to be such that the flow remains attached to the 
blade surfaces. Thus thin vortex sheets (unsteady wakes) emanate from the blade 
trailing edges and extend downstream. In  addition, for sufficiently high subsonic 
inlet conditions local supersonic regions which terminate a t  moving shocks will 
appear adjacent to blade surfaces. 

2.1. Time-dependent full potential formulation 

Equations governing the fluid motion can be derived from the integral conservation 
laws for mass, momentum and energy, and the thermodynamic relations for a perfect 
gas. The former provide corresponding differential equations in regions where the flow 
variables are continuously differentiable and ' jump ' conditions a t  surfaces across 
which (in the inviscid approximation) the flow variables are discontinuous, i.e. at 
shocks and blade wakes. In continuous regions the energy equahion can be replaced 
by the requirement that the entropy following a fluid particle must remain constant 
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FIGURE 1. Two-dimensional oscillating transonic cascade with mean-flow deflection. 

(see Aris 1962). In  general, the discontinuous changes in the flow quantities across 
a shock are proportional to the shock strength, but the change in entropy is 
proportional only to the third power of the shock strength (see Whitham 1974). Thus 
for a shock of weak to moderate strength it is a reasonable approximation to  neglect 
changes in entropy across the shock. With this approximation the uniform un- 
disturbed flow far upstream of the cascade will produce an isentropic and hence, by 
the Helmholtz theorem, an irrotational, time-dependent flow. 

The mass-conservation law then provides the following differential equation 
governing the fluid density p  ̂ and velocity potential &: 

C?o^+V.(,;V&) at = 0, 

where t is time. In  addition, after substituting the isentropic relations into the 
differential form of the momentum conservation law and integrating the resulting 
expression, it follows that 

p-’ = (- iY MZoOP)(Y--l)/Y = ( M - , A ) 2  = i-(~--l)W-~{&~++((V&)~-l)}. (2.2) 

Here y is the specific-heat ratio of the fluid, M is the Mach number of the undisturbed 
or steady flow, P is the fluid pressure, d is the speed of sound propagation and the 
subscript - co refers to the upstream free-stream condition. Since, by assumption, 
unsteady disturbances are produced solely by the blade motion, the admissible 
solutions of (2.1) and (2.2) for the present application are those in which acoustic 
energy does not radiate towards the blade row. Blade motions are then classified as 
subresonant if all acoustic waves attenuate in the far field; as superresonant if a t  least 
one such wave persists in the far field and carries energy away from the blade row 
in either the far-upstream or downstream axial direction; or as resonant if acoustic 
energy persists in the far field but is carried only in the circumferential direction. 
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The foregoing equations are supplemented by boundary conditions on moving 
blade surfaces am, and jump conditions at moving blade wakes Wm and a t  moving 
shocks Ykm. + , where the subscript + or - refers to a shock emanating from the upper 
or lower surface, respectively, of the mth blade. Note that we use italic letters to  denote 
the mean on steady-state surface positions as shown in figure 1 .  The vectors W ,  n,  and 
z are introduced below in conjunction with the surface conditions. The relative- 
displacement vector W measures the displacement of a point on the instantaneous 
position of a surface (blade, wake or shock) relative to its mean or steady-state 
position. The unit vectors n and z are normal and tangent, respectively, to a surface 
and directed such that n x z = e, points out from the page. The unit normal 
vector is directed outward from blade surfaces, upward at wakes, and downstream at 
shocks. 

For attached flows the normal component of the fluid velocity must equal the 
normal component of the surface velocity a t  blade surfaces (flow tangency), i.e. 

.. a 3  
V @ - n  = --‘n on Bm, 

at (2.3) 

where the vector W is prescribed. The blade wakes are also material surfaces; i.e. a 
fluid particle on the wake always remains there. Hence (2.3) also applies a t  wake 
surfaces. However, since the wake displacement vector is unknown a priori, an 
additional wake condition is required. This follows from the foregoing kinematic 
condition and the integral form of the mass-conservation law and requires that the 
density, and hence the thermodynamic properties, of the fluid must be continuous 
across thin vortex wakes. Thus the conditions 

apply a t  wake surfaces, where [ ] denotes the difference (upper minus lower) in a 
quantity across a wake. 

At shocks the mass-conservation law requires that 

(2.5) 

where [[ denotes the jump or difference (downstream minus upstream) in quantity 
across a shock. A second shock-jump condition follows from the conservation of 
momentum tangential and requires that the component of fluid velocity tangent to 
a shock or, after integrating along the shock, that  the velocity potential must be 
continuous across a shock; i.e. 

[&I = o on y k m  3 -  +. (2.6) 

Equation (2.6) also represents the requirement that  no vorticity be produced a t  a 
shock. I n  the potential approximation the conservation laws (see Whitham 1974, 
p. 17 1 )  for the normal component of fluid momentum and for the fluid energy (internal 
plus kinetic) are not imposed a t  shocks; as these are essentially precluded by the 
isentropic assumption. Thus in the present formulation neither the normal component 
of fluid momentum nor energy will be conserved across a shock. 

The formulation of the boundary-value problem for the velocity potential 6 is 
now complete. The problem posed is a formidable one consisting of a nonlinear 
time-dependent partial differential equation along with conditions imposed on 
moving blade, shock and wake surfaces in which the instantaneous locations of shock 
and wake surfaces must, in principle, be determined as part of the solution. Although 
numerical solutions to this problem would be of substantial interest, they would be 
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of limited practical value because of the prohibitive expense involved in obtaining 
the detailed unsteady response predictions required for turbomachinery flutter 
calculations. Thus in the present effort we will derive an approximation to the 
foregoing boundary-value problem, which is valid for small-amplitude (infinitesimal) 
blade motions, with the intention of providing a useful analytical model for 
turbomachinery aeroelastic investigations. 

3. The small-unsteady disturbance approximation 
3.1. Linearization 

We will seek an approximate solution to the foregoing time-dependent boundary 
value problem for small-amplitude (i.e. lwl = O ( E )  4 1 )  blade motions. For this 
purpose the flow variables are first expanded in an asymptotic series in B ,  e.g. 

&Wj t )  = $ o m  + e $ , ( X  t )  + W2), 

V&I9 = vq,+ (99-V) v&,J,+ O ( E 2 ) ,  

(3.1) 
where X is a position vector referred to the space-fixed (x, y) Cartesian coordinate 
frame of figure 1. I n  addition, Taylor-series expansions, e.g. 

(3.2) 
are applied to  refer information a t  a moving blade, wake or shock surface to the mean 
position of this surface. I n  (3.2) the subscripts Y and S refer to the instantaneous 
and mean surface locations respectively. Unit tangent and normal vectors a t  a point 
on a moving surface are related to the unit tangent and normal vectors a t  the location 
of this point on the mean surface as follows: 

?ty = [ 1 - r,.V@* zs] 7s + (TS  'V) w + O ( E 2 )  (3.3) 

and nY = z y x e ,  = [ l -z , .V9t-z , ]n,+(z,*V)@!xe,+O(~~).  (3.4) 
After substituting the foregoing series expansions and surface-vector relations into 
the full governing equations, equating terms of like power in B and neglecting terms 
of second and higher order in E ,  nonlinear and linear variable-coefficient boundary- 
value problems are obtained respectively for the zeroth- and first-order flows. 

The zeroth-order term $ J X )  in (3.1) is the velocity potential @(X) due to steady 
flow past a stationary cascade. Equations governing this steady flow, which is 
assumed to be known in the present study, follow from (2.1) through (2.6) after 
replacing the time-dependent flow properties &, p ,  p^ and A  ̂ by their zeroth-order or 
steady-flow counterparts, @, P,  p and A ,  setting temporal derivatives equal to zero, 
and imposing the resulting surface conditions a t  the blade, wake and shock mean 
positions. Since the first-order or unsteady problem is linear, the first-order potential 
We take advantage of this feature by introducing a complex representation, 
e.g. E $ ~ ( X ,  t )  = $ ( X )  eiWt, for all first-order flow variables, including the surface- 
displacement vectors, and adopting the convention that the real parts of these 
complex parameters represent the actual time-dependent physical quantities. The 
complex representation serves to remove explicit time dependence from the linearized 
unsteady problem, thereby facilitating the determination of a solution. In  addition, 
the cascade geometry, the prescribed form of the blade motion, i.e. 

W(X+mG,  t )  = r ( X )  ei(wt+mu) for X on B,  (3.5) 

where a is now a complex displacement vector and the vector r defines the amplitude 
and direction of the reference blade displacement, and the linearity of the first-order 
problem require that the unsteady flow exhibit blade-to-blade periodicity, i.e. 

$(X) = $(X+mG) ecim", (3.6) 
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and that (3.5) also apply to  shock and wake displacements. The periodicity condition 
(3.6) allows a numerical resolution of the unsteady flow to be limited to a single 
extended blade-passage region of the cascade and permits properties a t  the mth blade, 
wake or shock surface to be evaluated in terms of information provided at the 
corresponding reference (m = 0) surface. For simplicity, the subscript m will be 
omitted in the following discussion when referring to  a reference surface. 

It must be noted that the foregoing linearization is not valid in the immediate 
neighbourhood of a moving shock (see Hounjet 1981). An observer situated between 
the extreme shock positions will experience large-amplitude jumps in the flow 
variables as the shock passes by. Such local anharmonic effects can be accounted for 
by including additional terms in the asymptotic representations of the flow variables 
(see Williams 1979). However, since these have no impact on the linearized unsteady 
boundary-value problem, we defer their introduction until the subsequent discussion 
on unsteady aerodynamic response. 

3.2. The linearized unsteady boundary-value problem 

It follows from the differential form of the mass-conservation law (2.1),  the Bernoulli 
relations (2.2) and the asymptotic expansions for the flow variables (3.1), that the 
linearized unsteady flow is governed by the field equation 

iwp+V*[pV$+pV@] = 0, (3.7) 
and that the complex amplitudes of the first-harmonic unsteady density p ,  pressure 
p ,  speed of sound a and velocity potential $ are related by 

where DJDt  = iw+V@*V is a mean-flow convective-derivative operator. Upon 
substituting the steady and linearized unsteady (3.8) Bernoulli relations into (3.7) 
and performing some algebra, the following non-conservative form of the field 
equation for the unsteady potential is obtained: 

Conditions on the unsteady flow at blade B,, wake W ,  and shock Sh, + mean 
positions are obtained similarly by substituting the asymptotic (3.1) and Taylor (3.2) 
series expansions and the surface-vector relations (3.3) and (3.4) into the time- 
dependent flow-tangency (2.3),  wake-jump (2.4) and shock-jump (2.5) and (2.6) 
conditions. After performing some straightforward algebra, the following conditions 
on the linearized unsteady flow are determined. The first-order flow tangency 
condition has the form 

V$-n = [ior+ (V@-z) (r-V) r -  (r.V)V@]*n on B,. (3.10) 

Since the steady velocity and pressure are continuous downstream of the blade row, 
the conditions of continuity of normal velocity and pressure across blade wakes 

(3.11) 
reduce simply to 

[v$j.n = = 0, on w,, 
where the wake mean positions W, are assumed to coincide with the downstream 
steady-flow stagnation streamlines. At shocks, conservation of mass and tangential 
momentum require that 

[iwr,+@,- ar [TPI = I p V $ + p V @ n ' n + r , ~ ( p ~ ' , ) , l i  on Sh, 1 -  + 

DS $ 

(3.12) arnl 
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and MI + r ,  [l@J = 0 on Shm 3 -  + (3.13) 

respectively, where rn = W - n  is the complex amplitude of the shock displacement 
normal to the mean shock locus and the subscripts on CD denote partial derivatives 
in the indicated directions. For normal shocks and [ ( p @ , ) , ]  are identically zero. 
It therefore follows from (3.8), (3.12) and (3.13) and some algebra that the unsteady 
potential must satisfy the jump condition 

iwf(@] - M?, p2-? Qn [@,I) $1 = [@,I [ p ( M ? ,  p l - y  @; - 1 )  h.1 on fim, &, 

(3.14) 

where p ,  @ and the mean shock locations am + , are assumed to be known from the 
steady solution. Equations (3.14) and (3.13) provide the required relations for 
determining the jump in the unsteady potential at the mean location of a normal 
shock and the complex amplitude of the shock displacement in the streamwise 
direction respectively. The latter quantity is required to determine the concentrated 
loads produced by shock motion. 

Under uniform mean subsonic inlet and exit conditions the departure of steady flow 
quantities from their free-stream values will be O(e)  beyond some finite distances 
upstream and downstream from the blade row. Thus in the far field and to within 
the first-order approximation considered here, the unsteady differential equation (3.7) 
can be reduced to  the familiar constant-coefficient equation of classical linearized 
theory. The unsteady potential is continuous upstream of the blade row and has both 
a continuous and discontinuous component downstream. The continuous component 
accounts for acoustic wave propagation and the discontinuous component accounts 
for counter vorticity shed from the blade trailing edges and convected along the blade 
wakes. Analytic far-field solutions for the continuous and discontinuous components 
of the unsteady potential have been determined (see Verdon & Caspar 1980) which 
can be matched to a near-field numerical solution, and thus serve to complete the 
specification of the linearized unsteady boundary value problem. 

4. Aerodynamic response coefficients 
4.1. Surfuce-pressure distributions 

A solution to the linearized unsteady boundary-value problem is required to 
determine unsteady surface-pressure distributions and global unsteady airloads. The 
latter are the important results of an aerodynamic analysis intended for flutter 
prediction, since they permit the evaluation of aerodynamic work per cycle and/or 
aerodynamic damping; either of which can be used to determine whether the 
airstream tends to support or suppress a prescribed blade motion. The pressure acting 
at the instantaneous position of the mth blade surface is given by 

where r is a coordinate measuring distance in the counter-clockwise direction along 
the mean blade surface. The first two terms on the right-hand side of (4.1) are the 
steady and first-harmonic components of the pressure acting a t  the mth moving blade 
surface outside the small intervals bounded by the mean and instantaneous shock 
locations. The third and fourth terms represent the anharmonic contributions to the 
unsteady surface pressure caused by the motion of the shocks along the upper and 
lower surfaces of the mth blade. 

After expanding the pressure P i n  the manner indicated by (3.1) and (3.2), it  follows 
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from the steady and unsteady Bernoulli relations that the first harmonic component 
of the pressure acting a t  a moving blade surface Bm can be evaluated in terms of 
information supplied at the mean position B of the reference blade; i.e. 

The first term of the right-hand side of (4.2) is the harmonic unsteady pressure a t  
the mean position of the reference blade, and the second is the harmonic surface 
pressure produced by motion through a spatially varying steady pressure field. 

Following Williams (1979), the local anharmonic effect caused by shock motion is 
accounted for by assuming that 

where r,(O) is the displacement of the shock foot along the blade surface, H is the 
unit step function and 

(4.4) 

The first two terms on the right-hand side of (4.1) are discontinuous a t  the 
undisturbed shock locations. The third and fourth terms cancel these discontinuities 
and transfer them to the instantaneous shock locations. This can be seen by setting 
7 = rYA* in the foregoing equations to  determine an expression for [pa] a t  the 
instantaneous shock location. Although the unsteady pressure disturbance is not 
everywhere harmonic, its regions of anharmonicity are small. Consequently (see 
Tijdeman 1977 ; Ehlers & Weatherill 1982) the first-order global aerodynamic 
coefficients are harmonic in time. 

~ ( 7 ,  t) = upB] + (7-7sh)  [z] + Re {IPa] ei(wt+mg) >. 

4.2. Unsteady force and moment 

Up to this point we have placed no restriction on the mode of the blade motion. But 
we now limit consideration to the case usually considered in turbomachinery flutter 
calculations wherein each incremental blade section is undergoing a rigid-body 
motion. I n  this case only the unsteady force and moment coefficients must be 
determined to  analyse the stability of the blade motion. For rigid blade motions the 
first-order displacement-amplitude vector is given by 

r (X)  = h + a  x R, X on B,  (4.5) 

where h defines the amplitude and direction of blade translations, a defines the 
amplitude and direction (positive counterclockwise) of blade rotations and R, is a 
position vector extending from the mean position of the reference blade axis of 
rotation (i.e. from the point (X,, Y,)) to points on the mean position of the reference 
blade surface. These rigid two-dimensional motions model bending and torsional 
vibrations of actual rotor blades. The components h,, h, and 01 are, in general, complex 
to permit phase differences between the translations in the x- and y-directions and 
the rotatim. 

The force and moment (coefficients) acting on the mth blade are given by 

eFm = -fa, Pn d7 = C, + Re {c, ei(wt+mu) I + 0 ( s 2 )  (4.6) 

(4.7) 
and 

pX;dr = G, + Re {c ,  ei(wt+mu) I + O(e2), 

14 P L M  149 
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where the moment is taken about the moving pitching axis and 2, extends from this 
axis to points on the moving blade surface. After some algebra, i t  follows that 

r 

where cF and cM are the complex amplitudes of the unsteady force and moment 
respectively. The last two terms in (4.8) and (4.9) account for the concentrated loads 
due to shock motion, and they are evaluated a t  the mean positions of the shock roots. 

5. Numerical approximation 
For simplicity the numerical approximation will be outlined for transonic flow 

through a cascade of oscillating sharp-edged airfoils in which a t  most a single shock 
occurs in each blade passage. Thus unsteady phenomena associated with mean 
incidence and multiple shocks are omitted from present consideration. A numerical 
resolution of the linear variable-coefficient unsteady boundary-value problem is 
required over a single extended blade-passage region of finite extent. The unsteady 
differential equation, in this case (3.9), must be solved in continuous regions of the 
flow subject to boundary or jump conditions at the mean positions of the blade, wake 
and shock surfaces. Blade mean positions are prescribed, and the mean positions of 
wake (i.e. the downstream stagnation streamlines) and shock surfaces are determined 
as part of the steady solution. Finally, the unsteady, near-field numerical solution 
must be matched to far-field analytical solutions at finite distances (say 6 = gT) 
upstream and downstream from the blade row. Since the unsteady numerical model 
along with its application to subsonic cascades has been described in detail in Caspar 
& Verdon (1981), here we describe primarily those modifications required for 
transonic applications. 

In  view of the stringent and often conflicting requirements placed on the construc- 
tion of a computational mesh for cascade flows, we have adopted a two-step solution 
procedure. The basic approach is first to capture large-scale unsteady phenomena on 
a rectilinear-type cascade mesh of moderate density and then to determine a solution 
on a polar-type local grid of high density. The cascade mesh covers the extended- 
blade-passage solution domain, while the local mesh covers (and extends well beyond) 
a region of high velocity gradient ; for example near a rounded leading edge in Verdon 
& Caspar (1982) or near a shock in the present study. The velocity-potential 
distribution as determined by the cascade-mesh solution provides outer boundary- 
condition information for the local calculation, and the solution to the unsteady 
boundary-value problem is taken to be the local solution in a region covered by a 
local mesh and the cascade solution elsewhere. At present the local solution is 
essentially a correction to the cascade solution, i.e. there is no iteration between the 
cascade and local calculations. Because of this it is necessary to choose a rather 
extensive local region. 

The cascade mesh (see figure 2a) is composed of axial lines (6 = constant) which 
are parallel to the blade row and tangential curves which are percentile averages of 
the upper and lower boundaries. This mesh facilitates the imposition of the cascade 
periodicity condition (3.6) and the matching of the analytical and numerical unsteady 
solutions at far field boundaries. However, it does not yield an accurate resolution 
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FIGURE 2. Calculation meshes for unsteady transonic cascade flow: (a )  cascade mesh; 
(b )  local mesh. 

of the flow near rounded blade edges or near shocks, and it is not well suited for the 
accurate implementation of transonic differencing procedures. Thus in the present 
study a local mesh such as that shown in figure 2 ( b )  is employed to resolve the flow 
in the vicinity of a normal shock and in the supersonic region lying adjacent to the 
blade surface and upstream of the shock. This mesh consists of radial and 
circumferential lines, normal and roughly parallel respectively to the reference blade 
surface. Two of the radial lines (hereinafter referred to as the upstream and 
downstream shock mesh lines) are positioned at  the mean location of the shock foot 
so that information on the upstream and downstream side of the shock can be 
accurately represented. Hence the mean shock locus is currently approximated as 
being normal to the airfoil surface in the local unsteady calculation. The local mesh 
facilitates the imposition of the unsteady shock-jump conditions as well as the 
accurate implementation of the rotated and type-dependent transonic differencing 
strategies discussed below. 

5.1. Difference approximations 
Algebraic approximations to the various linear operators, which make up the 
unsteady boundary-value problem, are obtained using an implicit least-squares 
interpolation procedure. Thus consider a linear differential operator 2’ which 
operates on a constant by multiplying that constant by $. An algebraic approximation 
L# to 94 at the mesh point Qo can be written in terms of the values of # at Qo and 

14-2 
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a t  certain neighbouring points Q1, ..., Q,, which together with Qo are called a 
neighbour set. This approximation can be expressed in the form 

M 

m-1 
(z$)o ( W ) o  q0$o+ P r n ( $ m - $ o ) ,  (5.1) 

where the difference coefficients P, are evaluated in terms of a prescribed set of 
interpolating functions and a set of interpolating coefficients. The latter are determined 
by a weighted least-squares procedure. For the present application the neighbour sets 
are defined as shown in figure 2, i.e. in a 'centred' fashion for interior points and in 
a one-sided fashion for boundary points. 

Following Murman & Cole (1971) for transonic applications the plan is to 
distinguish between regions of subsonic flow where the unsteady differential equation 
is elliptic and supersonic flow where it is hyperbolic, and to use a differencing scheme 
that is sensitive to its local character. To accomplish this we first apply the rotated 
differencing concept introduced by Jameson (1974). Thus a t  each point of the discrete 
domain the field equation is expressed in canonical form, i.e. 

where 
Y o $  = W 1 + 3 2 ) $ 9  (5 .2)  

9, $ = A2( 1 - M 2 )  $ss = MP2(  1 - M 2 )  (@; $gg+ 2@g O7 $e7 + @; $77) (5.3) 

and (5.4) 
Here S and N are the local canonical coordinates, i.e. the Cartesian coordinates 
respectively aligned with and normal to, the local steady-flow direction, and 6 and 
7 are the computational coordinates, i.e. the cascade axial and circumferential 
coordinates (see figure 1 ) .  The principal part of the unsteady differential equation is 
shown explicitly in (5.3) and (5.4), and the dots refer to the remaining terms. It is 
clear from (5.3) and (5.4) that the local character of the unsteady differential equation 
depends on the local steady Mach number, and it becomes a simple matter to 
construct a suitable type-dependent differencing scheme. The linear operator Y2 
is always approximated by a central-difference expression, but the difference 
approximation to the operator Yl will depend on the local steady Mach number and 
hence on the local type of the unsteady field equation. Thus we set 

where the indices i a n d j  refer to the axial and tangential lines respectively of the 
cascade mesh or to the radial and circumferential lines respectively of the local mesh, 
and L, is a central difference operator. Therefore a t  supersonic points the difference 
approximation to Yl$ is retarded along the cascade tangential and the local 
circumferential mesh lines which are closely aligned with the mean-flow direction. 

Unsteady shock phenomena are captured in the cascade calculation, i.e. the 
unsteady differential equation is approximated, using either (5.6) or (5.5) a t  the field 
points immediately upstream or downstream respectively of the mean shock location. 
Shocks are subsequently fitted into the local unsteady solution by imposing the jump 
condition (3.14) a t  the shock points on the downstream shock mesh line. The 
shock-jump condition is modelled using one-sided difference approximations (first- 
order accurate on the upstream or supersonic side and second-order accurate on the 
downstream or subsonic side) to evaluate the normal derivatives of the unsteady 
potential a t  the shock mean position. At those points on the downstream shock mesh 
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line at which the steady flow is continuous, the condition [$I = 0 is imposed. To assist 
in evaluating the numerical solution procedure, a shock-capturing option has also 
been included in the local calculation. In  this case the condition [$a = 0 is imposed 
a t  all mesh points on the downstream shock mesh line. 

5.2. Solution procedure 

With the exception of supersonic field points and points on the upstream and 
downstream shock mesh lines, the systems of linear algebraic equations which 
approximate the linearized unsteady boundary values problem on the cascade and 
local meshes are constructed as described in Verdon & Caspar (1982). At a supersonic 
field point (i,j) the unsteady differential equation is approximated using neighbour 
sets centred a t  this point and a t  the adjacent upstream mesh point (i- 1 ,j). However, 
a t  points on the local upstream shock mesh line derivatives normal to  the flow 
direction are evaluated only in terms of information provided along this mesh line 
to avoid crossing the shock. For points on the downstream shock mesh line the 
shock-jump (3.14) or the continuity = 0 condition is approximated as described 
above. This treatment leads to a block-pentadiagonal system of linear algebraic 
equations of the form 

(5 .7)  

where bi is a vector of $-values on the ith cascade axial or local radial mesh line, and 
the submatrices Ai, Bi, Ci, Di and Ei are sparse, being mostly scalar-tridiagonal. Note 
that, with the exception of the points on the downstream side of a fitted shock, At = 0 
a t  subsonic points and Ei = 0. With this structure the system of equations (5.7) can 
be solved directly and efficiently using Gaussian elimination. 

i Cl#I+D1#2 = 4, 

' 1  #i-l+ CI # I  = FI, 
Ai#i-2+Biq5i_l+Ci#i+Di#i+l+E~~i+z = 4 (2 < i < I-l) ,  

6. Numerical examples 
The foregoing analysis has been applied to  cascades of vibrating sharp-edged 

double-circular-arc (DCA) airfoils operating a t  high subsonic inlet Mach number. The 
mean location of the zeroth or reference blade surface is defined by 

where 0 < x < 1 ,  H is the y-coordinate of the surface at midchord, 
R = +IHI-1(H2+0.25) is the radius of curvature of the surface, sgn (H) = +_ 1 for 
H 2 0, and the subscripts + or - refer to the upper or lower surfaces of the blade. 
For simplicity we will present only results for a single DCA configuration : a staggered 
(with 0 = 45') array with unit gaplchord ratio (G = 1 )  and consisting of 5% thick 
flat-bottomed DCA blades (i.e. H, = 0.05, H- = 0). I n  addition, for purposes of 
comparison, results will also be presented for a similar array (i.e. 0 = 45", G = 1 )  of 
flat-plate ( H ,  = 0) airfoils. For the flat-plate cascade the steady Mach number will 
be constant throughout the field, and hence there will be no coupling between the 
steady and unsteady flows. 

The unsteady solutions presented here have been determined on a cascade mesh 
extending one axial chord upstream and downstream from the blade row and, for 
those cases in which a normal shock emanates from the suction surface of each blade, 
on a local mesh extending from 10-90 yo of blade chord along the suction surface of 
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the reference blade and outward from this surface to well beyond the end of the shock. 
A cascade mesh consisting of 100 axial lines, 44 of which intersect the blade surfaces, 
and 30 tangential lines was employed. The local mesh consisted of 61 radial lines and 
11 circumferential lines. Variable mesh spacings were used in both the cascade and 
local calculations, with cascade tangential and local circumferential lines concentrated 
near blade surfaces, cascade axial lines concentrated near blade edges, and local radial 
lines concentrated near shocks. First-harmonic unsteady pressure-difference Ap(x)  
distributions, where 

AP(x)  = P,(Z, y - ) - ~ s ( x ,  Y + )  for 0 G x G 1, (6.2) 

shock-foot displacements rJ0) and unsteady moment coefficients cM will be presented 
for blades undergoing pure torsional motions (with a = 1,O) about their midchord 
points (X,, Yp = 0.5,O) at prescribed frequencies w and interblade phase angles u. The 
stability of such motions is governed by the out-of-phase (with blade displacement) 
component of the unsteady moment. Thus if Im{c,} < 0, the airstream tends to 
suppress a pure torsional motion, and hence this motion will be stable according to 
linear theory. 

6.1, Steady Mach-number distributions 

Full potential steady flows through the DCA cascades have been determined on 
similar but coarser cascade and local meshes using the finite-area numerical approxi- 
mation developed by Caspar (1983). In  each case the mean inlet Mach number iM-, 
is prescribed and the requirements 

Y.d?l,- = - I/*d.rI,+ for x = 0,1 (6.3) 

are imposed at  blade leading (unique incidence condition) and trailing (Kutta 
condition) edges to uniquely specify the steady flow field. It should be noted that 
with Caspar's procedure the steady differential equation is solved in conservative 
form (see $2.1) and shocks are captured. Although it would be preferable to use a 
steady solution with a fitted shock for the present application, it appears that steady 
information in the vicinity of a shock has been determined with sufficient accuracy 
to define the mean shock location and to permit the imposition of shock-jump 
conditions in the unsteady calculation. 

Predicted steady surface Mach-number distributions for the example DCA con- 
figuration are shown in figure 3. The prescribed inlet Mach numbers are 0.5, 0.7, 0.8, 
and 0.9 and the calculated exit Mach numbers M ,  are 0.43, 0.57, 0.62 and 0.65 
respectively. The corresponding inlet flow angles SZ-, are 49.0", 49.2', 49.4" and 49.6" 
respectively, and in each case the exit flow angle SZ, is 43.0". The steady flows at 
M-,  = 0.5, Mu, = 0.7andM-, = 0.8areentirelysubsonic, withpeaksuction-surface 
Machnumbersof0.561,0.804and0.941 occurringatrespectively40.8,38.5 and 36.7 % 
of blade chord downstream from the leading edge. The steady flow is transonic for 
M-,  = 0.9, with the supersonic region extending from 18.5 to 52.5% of blade chord 
along the suction surface and terminating at a shock. The Mach numbers a t  the foot 
of the shock are 1.193 on the upstream or supersonic side and 0.871 on the 
downstream or subsonic side. 

6.2 .  Unsteady response predictions 

Numerical results will be presented for cascades of DCA and flat-plate airfoils 
undergoing out-of-phase (a = 180') or in-phase (a = 0") torsional vibrations at  low 
(w = 0.1) through moderate (up tow = 1 .O) frequencies and at  the inlet Mach numbers 
indicated in figure 3. Particular emphasis will be placed on the unsteady response 
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predictionsfor the transonic flows a t  M-,  = 0.9, and the highest frequency considered 
is the most representative one for turbomachinery flutter applications. The inlet and 
exit Mach numbers differ substantially for the staggered DCA configuration, and 
this difference effects the overall character of the unsteady flow. For example, a t  
M - ,  = 0.9, unit-frequency out-of-phase torsional vibrations of both the staggered 
DCA ( M ,  = 0.65) and flat-plate ( M ,  = 0.9) cascades are superresonant. However, 
acoustic energy only propagates in the far-upstream direction for the DCA array 
because the waves travelling downstream a t  the lower exit Mach number attenuate 
with increasing distance from the blade row. 

A comparison of the results shown in figures 4-6 illustrates several features of the 
numerical solution procedure. Cascade and combined (i.e. cascade and local) mesh 
response predictions for the staggered DCA configuration operating a t  an inlet Mach 
number of 0.9 are shown in figures 4 and 5 respectively. These results have been 
determined by shock capture, i.e. the field equation has been solved across the shock 
in the cascade calculation and the continuity condition = 0 has been imposed on 
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FIGURE 4. Cascade mesh-response predictions for torsional blade vibrations of the example 
DCA cascade; M - ,  = 0.9, CT = 180": ( a )  in-phase component (real part) of the unsteady response; 
( b )  out-of-phase component (imaginary part) of the unsteady response. 

the downstream shock mesh line in the local calculation, and they clearly illustrate 
the need for the local unsteady analysis to resolve the flow through a staggered 
transonic cascade. The errors associated with the cascade calculation occur because 
this mesh is highly skewed and, as a result, a number of axial mesh lines cross the 
normal shock. The combined mesh solutions shown in figure 5 indicate the significant 
improvement in resolution near the shock that can be achieved with the local mesh 
calculation. The pressure-difference predictions shown in figure 6 have been determined 
by imposing the shock-jump condition (3.14) in the local calculation. The continuous 
(figure 5) and discontinuous (figure 6) surface-pressure distributions are identical 
upstream, but differ substantially downstream, of the shock discontinuity. The 
results shown in figures 5 and 6 reveal the strong impact of shock displacement on 
the first-harmonic surface-pressure response, particularly a t  low vibration frequency. 

The effect of frequency on the response to out-of-phase torsional blade vibrations 
of the staggered DCA and flat-plate cascades operating a t  M - ,  = 0.9 is illustrated 
in figures 6 and 7 .  These blade motions are subresonant for w = 0.1 and 0.25, and 

X 
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FIGURE 5. Cascade plus local mesh-response predictions for torsional blade vibrations of the 
example DCA cascade: unsteady solutions determined by shock capture; M - ,  = 0.9, cr = 180": 
(a)  and (b )  as in figure 4. 

X 

superresonant for w = 0.5, 0.75 and 1.0. For the DCA cascade the complex shock 
displacement r,(O) along the blade surface leads the blade rotational displacement 
01 by an angle greater than 90" for w = 0.1 and 0.25 and less than 90" for w = 0.5, 
0.75 and 1.0. Hence the instantaneous location of the shock foot will generally be 
upstream of its mean position for the two lower frequencies and downstream of its 
mean position for the three higher frequencies, when the blade is displaced nose-down 
from its mean position. For the examples considered in figure 6 one effect of including 
the shock displacement in the local solution (see also figure 5) is a decrease in the 
imaginary part of the unsteady pressure difference downstream of the shock, and 
hence a decrease in the out-of-phase moment, i.e. stability enhancement. However, 
the anharmonic component of the unsteady pressure produced by the shock motion 
partially compensates for this effect. The steady pressure jump across the foot of the 
shock is positive ( [PE]  = 0.593), the shock mean position is slightly downstream of 
the torsional axis (R;z,  = -0.025), and the out-of-phase component of the shock 
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FIGURE 7. Effect of frequency on the unsteady response due to torsional blade vibrations of the 
example flat-plate cascade; M - ,  = 0.9, c = 180': (a)  and ( b )  as in figure 4. 

displacement is positive (Im {r,(O)} > 0) .  Therefore the anharmonic component of the 
unsteady pressure produces a small but positive or counterclockwise imaginary 
moment (see (4.9)) which tends to amplify the blade motion. However, for the blade 
motions considered in figure 6 the net effect of shock displacement is a stabilizing 
one. A comparison of the DCA results in figure 6 with those for the flat-plate cascade 
in figure 7 reveals the dramatic influence of steady/unsteady interactions on the low 
through moderate frequency unsteady response at high subsonic inlet Mach number. 
The moment predictions for the staggered DCA configuration in figure 6(6)  and 
for the flat-plate configuration in figure 7 indicate that the stability margin for 
out-of-phase torsional vibrations is significantly reduced as the frequency increases 
through a resonance condition. 

The effect of frequency on the response to in-phase torsional blade vibrations of 
staggered DCA and flat-plate cascades is illustrated in figures 8 and 9. The motions 
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FIQURE 8. Effect of frequency on the unsteady response due to in-phase (IT = 0') torsional 
vibrations of the DCA cascade; M - ,  = 0.9: (a) and ( h )  as in figure 4. 
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FIQURE 9. Effect of frequency on the unsteady response due to in-phase torsional blade 
vibrations of the flat-plate cascade; M - ,  = 0.9: (a) and ( b )  as in figure 4. 

considered here are superresonant, with acoustic energy propagating away from the 
blade row in both the far-upstream and far-downstream directions. The amplitudes 
of the complex response coefficients for the in-phase torsional vibrations depicted in 
figures 8 and 9 are generally smaller than those for out-of-phase torsional vibrations 
depicted in figures 6 and 7, particularly a t  the two lower frequencies w = 0.1 and 0.25, 
where the in-phase vibrations are superresonant and the out-of-phase vibrations are 
subresonant. For the staggered DCA cascade operating at M-,  = 0.9 the complex 
shock displacement r,(O) lags the blade rotational displacement for w = 0.1,0.25 and 
0.5, and leads the rotational displacement for w = 0.75 and 1 .O. Thus the out-of-phase 
component Im{r,(O)> of the shock displacement is negative a t  the three lower 
frequencies and positive a t  the two higher frequencies. Since the mean shock location 
is slightly aft of midchord, the concentrated load due to shock motion produces a 
small stabilizing moment for w = 0.1,0.25 and 0.5 and a small destabilizing moment 
for o = 0.75 and 1 .O. However, owing to its influence on the harmonic surface-pressure 
response, the net effect of the shock motion is a destabilizing one at the three lower 
frequencies and a stabilizing one a t  the two higher frequencies. The stability margin 
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FIGURE 10. Effect of Mach number on the unit-frequency response due to out-of-phase 
(r = 180') torsional blade vibrations of the DCA cascade: (a )  and ( b )  as in figure 4. 

X 

for in-phase torsional vibrations of the DCA cascade tends to increase with increasing 
frequency (figure 8 b ) ,  but this is not the case for the flat-plate cascade (figure 9) where 
the moment ( -Im{cM}) resisting the blade motion is greater a t  o = 0.5 than i t  is 
a t  the other frequencies. 

The effect of Mach number on the unit-frequency response to out-of-phase and in- 
phase torsional vibrations of the DCA and flat-plate cascades is illustrated in figures 
10-13. A comparison of these DCA and flat-plate results again reveals the substantial 
impact of mean-flow gradients on unsteady response, particularly a t  high-subsonic 
inlet Mach number. Recall that  at M - ,  = 0.5,0.7 and 0.8 the flow through the DCA 
cascade is everywhere subsonic, while a t  M-, = 0.9 it  is transonic with a shock 
emanating from the suction surface of each blade. The out-of-phase motions of the 
DCA cascade are subresonant at M-,  = 0.5 and 0.7, and superresonant at the two 
higher Mach numbers, while the out-of-phase motions of the flat-plate cascade are 
subresonant a t  M-,  = 0.5, 0.7 and 0.8, and superresonant at M-,  = 0.9. For each 
cascade the out-of-phase motion a t  M-,  = 0.8 is close to a resonance condition, and 
as a result accurate response predictions are difficult to achieve. The in-phase motions 
of both the DCA and flat-plate cascades are superresonant. The unsteady pressure- 
difference distributions for the out-of-phase vibrations of the DCA (figure 10) and 
flat-plate (figure 11) cascades are very similar for M-,  = 0.5 and 0.7, but differ 
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FIGURE 11. Effect of Mach number on the unit-frequency response due to out-of-phase torsional 
blade vibrations of the flat-plate cascade: (a )  and ( b )  as in figure 4. 
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substantially for M-,  = 0.8 and 0.9. The differences a t  M-, = 0.8 are primarily due 
to the different character of the unsteady motions (i.e. superresonant us. subresonant) 
and to the near-resonance operation of each cascade. At the highest Mach number 
the differences in the DCA and flat-plate unsteady pressure-difference distributions 
are clearly due to  the transonic and shock-motion phenomena associated with the 
DCA configuration. For the four inlet Mach numbers considered, the stability margin 
for the out-of-phase torsional vibrations is the lowest at M-,  = 0.5 for the DCA 
cascade and at M-, = 0.8 for the flat-plate cascade. The unsteady pressure-difference 
distributions for the in-phase vibrations of the DCA and flat-plate cascades are again 
similar for M-,  = 0.5 and 0.7, differ somewhat for M - ,  = 0.8 and differ sub- 
stantially for M - ,  = 0.9. The differences a t  M - ,  = 0.8 can be attributed to the 
relatively large mean Mach-number gradients which occur along the suction surface 
and upstream of midchord of each DCA blade, while those a t  M - ,  = 0.9 are due to 
the transonic phenomena occurring in the DCA cascade. The in-phase torsional 
stability margin for both the DCA and flat plate cascades is lowest a t  M - ,  = 0.5. 
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FIGURE 12. EfTect of Mach number on the unit-frequency response due to in-phase (u = 0') 
torsional blade vibrations of the DCA cascade: (a)  and (b )  as in figure 4. 

7. Concluding remarks 
A linearized unsteady aerodynamic analysis has been developed for turbomachinery 

aeroelastic applications. Here the unsteady flow is produced by the small-amplitude 
(infinitesimal) harmonic vibrations of the blades of a two-dimensional cascade 
operating in an inviscid subsonic or transonic flow with embedded shocks. The 
unsteady potential is determined as the solution of a linear variable-coefficient 
boundary-value problem in which surface conditions are imposed a t  the mean 
positions of blade, wake and shock surfaces, and the variable coefficients depend on 
the underlyirlg full potential, mean or steady flow. The local character of the unsteady 
differential equation (i.e. elliptic or hyperbolic) depends on the local steady Mach 
number, and the unsteady potential is discontinuous at shock mean positions. Shock 
displacement and hence the concentrated loads produced by this displacement are 
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FIGURE 13. Effect of Mach number on the unit-frequency response due to in-phase torsional 
blade vibrations of the flat-plate cascade: (a )  and ( b )  as in figure 4. 

proportional to the discontinuity in the unsteady potential. This analysis is intended 
for application a t  the reduced frequencies of interest for turbomachinery flutter 
applications (i.e. w = O(1)) and includes the effects of real blade geometry and mean 
blade loading as well as the effects of transonic Mach numbers and shock motions 
within the framework of a linear frequency-domain formulation. It is therefore 
believed to represent an important advance over the classical linearized analyses 
currently employed in turbomachinery aeroelastic studies and over the time- 
linearized unsteady transonic analyses that have been developed for fixed-wing 
applications. 

The unsteady solutions presented in this paper have been determined by applying 
an implicit least-squares finite-difference approximation on cascade and local grids. 
Numerical examples have been provided to establish confidence in the unsteady 
analysis, especially a t  high reduced frequency, and to illustrate the strong impact 
of non-uniform steady flow on the unsteady response a t  high subsonic and transonic 

X 
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Mach numbers. Particular emphasis has been placed on evaluating the effects of shock 
motions. Such motions must be included to  achieve a uniformly valid first-order 
transonic solution. I n  future work efforts should be undertaken to extend the range 
of application and t o  improve the accuracy of the unsteady numerical approximation. 
In particular, the local calculation should be applied on a mesh that wraps around 
a rounded leading edge and extends along the lower surface of the reference blade 
so that mean incidence effects and multiple shock phenomena can be analysed 
simultaneously. In  addition, mean-flow equipotential and streamlines should be used 
as local mesh lines in the vicinity of a shock to permit a more accurate resolution 
of unsteady shock phenomena, and an iterative procedure should be used to match 
the cascade and local solutions properly. Finally, detailed parametric studies should 
be conducted to provide a more complete understanding of the effects of blade 
geometry and loading, blade-vibration mode and frequency, and shock motion, on 
the unsteady aerodynamic response, and hence on the aerodynamic stability of 
cascades operating a t  transonic Mach numbers. 
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